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Ql/ ABSTRACT

In a "pyramid" of successively reduced-resolution
versions of an image, by linking nodes representing image
blocks to nodes representing nearby larger blocks that
most closcly resemble them, we can conustruct trees (defined
by the 1links) representing homogeneous parts of the input
image. In this paper, we apply this approach to segmenting
an image on the basis of texture. We start from an initial
decomposition of the image into small blocks (e.g., 8 by 8);
compute a textural property for each block, yielding an array
of property values; build a "pyramid" of reduced-resolution
versions of this array; and apply the node linking process to
this pyramid. The resulting trees define a segmentation of
the original image into unions of the small blocks. This
segmentation is similar to that obtained by minimum-error
thresholding of the textural property values. Substantially
better results are obtained when this "bottom-up" block
linking process is preceded by a "top-down" process in which
large homogeneous blocks are linked to all of their subblocks;
the bottom-up linking is then used only for the blocks that
were not linked by the top-down process.
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tained by minimum-error thresholding of the textural property
values. Substantially better results are obtained when this
"bottom-up” blocklinking process is preceded hy a "top-down"
process in which large homogeneous blocks are linked to all ot

their subblocks; the bottom-up linking is then used only fv1 the

blocks that were not linked by the top~down proccess.

:
|
_J

UNCLASSIFIES

$I€2uM T S AL F CaT Am LF ‘ag S dRen Dore Lriecenm,




1. Introduction

Segmentation of an image into differently textured regions
is a relatively difficult problem {l]. In order to distinguish
reliably between two textures, we must examine relatively large
samples of them, i.e., relatively large blocks of the image.
But a large block is unlikely to be entirely contained in a

homogeneously textured region, and it becomes difficult to

correctly determine the boundaries between regions. f
Chen and Pavlidis [2] have investigated a solution to the

block size problem based on the use of a "pyramid" of succes-

sively reduced-resolution versions of the given image. If the

image is 2" by 2", the successive layers of the pyramid are,

n-1

e.g., 2 by ph~1l  ,n-2 n-2

2 by 2 ¢+ seoer 2 by 2, 1 by 1. The

3 elements of the array at layer k (with the original image being

layer 0) thus represent image blocks of size 2k by 2k, and the

size of the array is 277K by 2" We assume here, for sim-
plicity, that the elements in each layer correspond to nonover-

lapping 2 by 2 blocks of elements in the layer below. (Other

ways of constructing pyramids, based on overlapping blocks,

are also possible, as will be seen below.) Thus each 2k by 2k
F block is the union of four Zk-l by Zk-l blocks, which are its r~°;—-—-—--———--.'j
four guadrants. For each block we can compute any desired tex- I "( '

tural property, or a set of such properties; see [1] for a re- 1 i

view of textural properties. We can now define a top-down seg- - - - -

nentation of the image into unions of blocks, based on the ‘on/
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values of these properties, as follows; Starting from the

top of the pyramid (a single node corresponding to the entire
2" by 2" image), we compare the property value(s) for each
block with the values for its quadrants. If the values are
sufficiently similar, we leave the block intact; if not, we
split it into quadrants, and repeat the process for each
quadrant. When this process is complete, each block that re-
mains unsplit should be contained in a homogeneously textured
region. Moreover, the maximal connected sets of blocks that

have similar textural properties should correspond to the

homogeneously textured connected components of the image. Note

that we can use a special case of this method to segment an
image into connected regions of different average gray level
by simply using average gray level as the "textural property".
Recently, a different pyramid-based method of segmenting
an image was proposed by Burt et al. [3-5]. It makes use of
a pyramid defined by overlapping blocks - e.g., the elements
at each level correspond to 4 by 4 blocks of elements at the
level below, where these blocks overlap by 50% both horizon-

tally and vertically; the levels thus shrink by powers of 2,

just as in the nonoverlapped case. Thus an element of level k

has 16 "sons" at level k-1, and it is easily verified that
this implies that an element at level k-1 has four "fathers"
at level k. Initially, we associate property values with the

elements at each level by simple averaging the values of the
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16 "underlying" elements at the level below. We then define

"links" between elements at successive levels based on the
similarity of their values; e.g. [3], we link each element to
that one of its four "fathers" which is most similar to it.
(For variations on this idea see [4-5].) We now recompute
each element's value by averaging the values of only those

of its sons that are linked to it (if any). This causes

the similarities to change, so we may need to change some

of the links; we then recompute the values again, and repeat
the process. The links tend to stabilize after a few itera-
tions. If we trace them up to a level near the top of the
pyramid (e.g., the 2 by 2 level), they define trees of linked
image blocks. The sets of pixels at the leaves of such a tree
constitute a homogeneous subpopulation of image pixels (but
not necessarily a connected region!), so that the trees define
a segmentation of the image into (at most four) subsets.

In the experiments described in [3-5], the property used
was simply (average) gray level, so that the images were seg-
mented into subsets having different average gray levels.

This paper investigates a generalization of the "pyramid link-
ing" approach of [3-5] which makes use of textural properties.
Since such properties are not meaningful for single pixels, we
begin with a fixed partition of the image into small blocks

(e.g., 8 by 8), and compute a textural property for each block;

this yields a 2773 py 2773

array of property values, which we




use as input to the pyramid linking process. The trees defined
by pyramid linking thus have 8 by 8 blocks, rather than single pixels,
as their leaves, and the original image is segmented into unions
of such blocks.

Since textural properties measured on 8 by 8 blocks are
quite noisy, the pyramid linking process will not always yield
a segmentation into the desired regions; for example, a block
near the border of a region whose property value is close to '
that of the neighboring region may get linked to that region,
and clusters of nearby blocks interior to a region whose prop-
erty values differ from that of the region may support one an-
other and become linked to a different subtree. In [6] it was *
found that smoothing the array of textural property values,
e.g. by median filtering, greatly improves texture classifica-
tion performance; note that a process such as median filtering
tends to smooth the values within a homogeneous region with-
out blurring them across region boundaries. Property value
smoothing is also used in the present paper to produce more
‘reliable values, thus improving the results of the linking
process.

Considerable further improvement is obtained by combining
the "bottom-up” linking process described above with a "top-
down" process similar to that used by Chen and Pavlidis. Here
blocks judged to be homogeneous are linked to all of their ‘

subblocks (i.e., the links are created top down), and bottom-up

i
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linking is used only for those blocks that are left unlinked
by the top-down process. This process will be described in
further detail in Section 4.

In Sections 3 and 4 of this paper, the pyramid linking
approach is applied to the two 512 by 512 test images shown
in Figure 1. These images are composed of the geological
terrain textures used in earlier studies of texture classi-
fication [6,7)}; (a) is Mississippian Limestone and Shale
above the 45° diagonal and Lower Pennsylvanian Shale below
it (labeled M/L), while (b) is Lower Pennsylvanian Shale
above and Pennsylvanian Sandstone and Shale below (labeled

L/P).
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2. Texture Features and Feature Arrays

The texture feature used was the second-order gray level
statistic "CONTRAST", which is the moment of inertia of the
co-occurrence matrix about its main diagonal [1]). Co=-occurrences
were tabulated for a one pixel displacement is the horizontal
direction. This feature was chosen because it performed quite
well in the texture feature studies of Weszka et al. [7), and
it is also computationally cheap, since it can be computed

from a difference histogram rather than from a co-occurrence

matrix. Many other texture features could have been used,
but we restricted ourselves to one feature because our primary
interest was in the relative performance of pyramid linking
schemes in comparison with standard methods.

The features were computed for nonoverlapping small win-
dows (blocks) of the image. The sizes of these windows were
8 by 8 or 16 by 16 pixels. The size of the resulting feature
array was 64 by 64 or 32 by 32. For example, if we compute
the features for a 512 by 512 image in 8 by 8 blocks, the size
of the feature array is 64 by 64. In the corputation of these
"CONTRAST" feature arrays we used a fast algorithm which re-
duced the computation time drastically compared to the conven-
tional method. Instead of tabulating the co-occurence matrices
for each of the 4096 (or 1024) blocks and deriving the "CONTRAST"
features from these matrices, we derived the features from a
difference histogram (in effect) by simply summing the squared

differences of those pairs of pixels which had the required




displacement. With this approach the whole feature array was
computed during one image scan.

Prior to pyramid segmentation the featurc values were
scaled to make them suitable for the pyramid algorithms, which
were designed to operate on input data in the range 0-63.
Also, because texture features measured over small windows are
unreliable, smoothing was applied to the feature arrays. The
smoothing method used was median filtering (value replaced by
the median of the feature values in the neighborhood), which
was found in [6] to be effective for texture feature value
smoothing. In the present studies we applied 0-5 i%erations
of median filtering (using a 3 by 3 pixel neighborhood) to
the feature arrays and then we scaled these arrays linearly

to have values ranging between 0 and 63.




3. Experiments Using Iterative Bottom-up Linking

In all segmentation experiments we used ten iterations

in the pyramid node linking computations, althouygyh in most
cases the segmentation converged earlier to a stable state.

In the pyramid initialization, the methods with unweighted

averaging of sixteen or four sons were used. Forced linking
was performed on one pyramid level at a time, and the segmen- }
tation was forced to give just two classes. These and other

modifications of the original pyramid process are described

in [4] and [5].

The effect of median filtering prior to segmentation is
illustrated in Figure 2 for the image M/L. Figure 2a shows
the median filtered 32 by 32 pixel feature arrays after 0 to
5 iterations of median filtering. The pyramid segmentation
results for these six cases are presented in Fig. 2b. For
comparison, Fig. 2c shows the corresponding segmentations 4
using a minimum error thresholding method (the threshold that
gives the minimum number of misclassified pixels is used to
segment the feature array into two classes). It can be seen
that the median filtering effectively reduces the error rate
and that the results for these two segmentation methods (pyramid
node linking and minimum-error thresholding) are quite similar.
The selection of the minimum error threshold is very difficult ﬁ
for the images with 0 to 1 iterations of median filtering, be-

cause the feature value histograms are not bimodal in these

cases.




Figs. 3 and 4 illustrate the use of 4 and 16 sons in
pyramid initialization for the 64 by 64 feature arrays M/L
and L/P. Figs. 3a and 4a are the median filtered arrays after
five iterations and 34 and 4d after three iterations of median
filtering. In Figures 3b, 4b, 3e and 4e are the corresponding
segmentations using four-son initialization, while in Figs. 3c,
4c, 3f and 4f are the results for sixteen sons. 1l6-son initial-~-
ization gave slightly better results for these noisy feature
arrays, while for less noisy gray level images the 4-~son in-
itialization appears to be preferable ([4].

To make the evaluation of the results easier, error rates
were computed for each case. The error rate is defined to be
the percentage of misclassifications for the unmixed windows
in the original image [6]. The error rate is based on the un-
mixed windows since the mixed windows {(on the diagonal) always
have 50% error.

In Table 1 are presented the error rates for 64 by 64
feature arrays derived from M/L and L/P and for a 32 by 32 array
derived from M/L using 16 by 16 windows. 1In each case 0 to 5
iterations of median filtering were used before segmentation.
Error rates for minimum error thresholding, for pyramid seg-
mentation with l16-son initialization, and for the top-down/bottom-
up linking method (described in Section 4) are shown. It can be
seen that the error rates for bottom-up pyramid segmentation
are very close to the error rates for minimum error thresholding.

The minimum error thresholds were found empirically by looking




for a threshold which gives the minumum error rate. It
was found, however, that these thresholds can be derived
automatically with fairly good accuracy by Gaussian fitting
to feature value histograms obtained from properly selected
training samples.

To reduce the effects of some very high feature values

in some of the feature arrays we also did experiments in

which the feature values were truncated by setting the values
above a threshold equal to the value of the threshold. After
this the arrays were again linearly scaled. Using this method
the results were slightly better. This suggests that it is de-
sirable to use some kind of nonlinear scaling of features, if
we have feature values that are too dominating even after
median filtering. It was also found that reduction of the gray
level range of the original image prior to feature value com-
putation did not have much effect on the segmentaion results.
When 32 or 16 gray levels were used instead of 64, the error

rates were only slightly higher.
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4. Experiments Using Noniterative Top-down/Bottom-up Linking

The top-down phase of this new linking method resembles
the split-and-merge algorithm used by Chen and Pavlidis in [2].
But instead of using a quadtree data structure we do split-and-
link operations in the pyramid structure. The following steps
are used in this segmentation approach.

a) Initialize the node values of the pyramid by block

averaging of each node's four sons.

b) Start linking at a specified level k. Find the
minimum and maximum values of each node's four
sons (at level k-1). If the difference between
the maximum and mimimum values is less than a
selected threshold, link all four sons to their
father, and go to level k-1. At this level, link
all four sons (at level k-2) to those nodes which
are linked to their fathers, i.e. which belong to
uniform blocks at level k. For the remaining nodes,
apply the same test that was applied at level k, and
link a node's sons to it if their range of values
is below the threshold.

c) Link each unlinked node to one of its four fathers
(closest in value). Do this at all levels starting
from level 0. This process is done only once, rather
than being iterated as in [3-5]. The resulting tree

defines the final segmentation of the image.




For all test images the top-down linking was done from
level 4 to level 1. The selection of the threshold value for
block uniformity testing was done empirically. The same
threshold value was used at each level. Because the error rates
seemed not to be very sensitive to changes in this threshold
value, it should not be difficult to find the value automatically.

The error rates obtained by the top-down/bottom-up linking
method are also shown in Table 1. It can be seen that these
error rates are much lower than the results for bottom-up
linking and for minimum error thresholding. The results are
guite good even without using median filtering.

Figure 5 shows the best results for the 64 by 64 feature
arrays. Figs. 5a and b show the M/L and L/P feature arrays
after five iterations of median filtering and Figs. 5c and 4
show the corresponding segmentation results. Figure 6 shows
the segmentation results for the same feature arrays without
median filtering.

Figure 7 shows the results for the 32 by 32 feature
array M/L (features computed in 16 by 16 blocks). Fig. 7a
shows the feature arrays after 0-5 iterations and Fig. 7b shows
the segmentation results.

The results obtained by top-down/bottcm-up linking
are very good. It is evident that in order to get good segmen-

tation results for texture images, we should use global infor-

mation obtained from the upper pyramid levels to guide the




segmentation at lower levels. If we use only bottom-up linking,
the feature arrays are too noisy for good segmentation.

Many variations on the top-down/bottom-up linking method
are possible, but the exploration of these variations is beyond
the scope of the present study. Further studies in this area

are planned.
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5. Conclusions

This study shows that the pyramid node linking method
can be successfully applied to segmentation by texture. By

using iterative feature value smoothing prior to segmentation

quite small windows can be used for texture feature computation.
This means that the dividing line between two texture types can
be found with reasonable accuracy.

The accuracy of segmentation obtained by the basic bottom-

up linking approach is comparable to the accuracy obtained by

minimum error thresholding of the feature array. The advantage
is that we need not look at the feature value histogram. Deter-
mining the appropriate threshold (or thresholds) from the histo-
gram is often very difficult.

A great improvement in segmentation accuracy can be obtained
by using a top-down/bottom-up linking method. 1In this approach
global information obtained from upper pyramid levels is used to
locate large homogeneous areas, while more accurate boundary

information about these areas is obtained by linking nodes on

lower levels to the nodes representing these major areas.
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Iterations of

Minimum error

Image median filtering thresholding
M/L 0 39.4
(Fig. 1la) 1 30.7
2 26.5
3 24.3
4 22.8
5 22.0
L/P 0 25.7
(Fig. 1b) 1 10.7
2 6.8
3 5.2
4 4.3
5 3.5
M/L 0 33.7
(Fig. la) 1 19.1
using 16x16
windows 2 13.7
3 10.8
4 8.8
S 7.7
Table 1.

Bottom-up Bidirectional
linking linking
37.8 18.0
27.7 10.7
24.0 8.6
19.4 8.5
23.7 8.3
21.0 8.0

25.0

9.9

5.2

4.6 .
6.3

3.3 .
36.0 14.7
19.8 5.5
11.1 6.0
12.2 5.2
8.0 2.6
6.4 2.8

Error rates (%)
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(a)

(b)

Figure 1. Test images
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Figure 4. PAnalogous to Figure 3 for the image
in Figure 1b

a) b)

c) d)

Figure 5. Bidirectional linking results
a,b. Feature arrays for Figs. la-b after 5 1
iterations of median filtering

c,d. Segmentations
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